Attiny wearable

img_20180412_203153-600

Attiny wearable project from Facelesstech:

It’s a foundation for a wearable platform. It’s a Nato watch strap threaded through a PCB with a coin cell battery holder between the PCB and the strap. I’m using a Attiny85 this time around but could be used for most chips/dev boards. This is a proof of concept to iron out any problems I’ve overlooked.

Project info at Facelesstech’s blog and the GitHub repository here.

Check out the video after the break.

from Dangerous Prototypes https://ift.tt/2rgJ8ZJ

Attiny wearable

img_20180412_203153-600

Attiny wearable project from Facelesstech:

It’s a foundation for a wearable platform. It’s a Nato watch strap threaded through a PCB with a coin cell battery holder between the PCB and the strap. I’m using a Attiny85 this time around but could be used for most chips/dev boards. This is a proof of concept to iron out any problems I’ve overlooked.

Project info at Facelesstech’s blog and the GitHub repository here.

Check out the video after the break.

from Dangerous Prototypes https://ift.tt/2rgJ8ZJ

6 channel speaker selector

p-26647931347_5cf07660be_z-600

Dilshan Jayakody published a new build:

If you are an audio enthusiast and if you have multiple audio systems and speakers, you may definitely need to have a speaker selector switch. These switches allow you to route a audio signal through a switching system and distribute it to various speakers. Using this listener can select single amplifier – speaker combination through the switch. We mainly design this switch to share our speaker system with multiple audio amplifiers. We design this switch to handle 6 stereo audio channels.

See the full post on his blog here.  Project files are available at Github.

from Dangerous Prototypes https://ift.tt/2rd41ox

Free PCB Sunday: Pick your PCB

BP-600x373

We go through a lot of prototype PCBs, and end up with lots of extras that we’ll never use. Every Sunday we give away a few PCBs from one of our past or future projects, or a related prototype. Our PCBs are made through Seeed Studio’s Fusion board service. This week two random commenters will get a coupon code for the free PCB drawer tomorrow morning. Pick your own PCB. You get unlimited free PCBs now – finish one and we’ll send you another! Don’t forget there’s free PCBs three times every week:

Some stuff:

  • Yes, we’ll mail it anywhere in the world!
  • Be sure to use a real e-mail in the address field so we can contact you with the coupon.
  • Limit one PCB per address per month please.
  • Like everything else on this site, PCBs are offered without warranty.
  • PCBs are scrap and have no value, due to limited supply it is not possible to replace a board lost in the post

Be the first to comment, subscribe to the RSS feed.

from Dangerous Prototypes https://ift.tt/2jdENme

App note: Electrical techniques for using different power sources on vibration motors

an_precisionmicrodrives_ab011

Application bulletin from Precisionmircodrives on powering vibration motors from different and some cases fluctuating power sources. Link here (PDF)

As vibration motors have a wide variety of applications, they are often integrated into systems which have different power sources. A common concern, in terms of power supply, is adjusting the source power supply voltage to a suitable level for the vibration motor or drive circuitry. This protects the motor, and can ensure a constant level of performance for uses like haptic feedback.

from Dangerous Prototypes https://ift.tt/2vYRv1u

App note: Map colors of a CIE plot and color temperature using an RGB color sensor

an_maxim_AN5410

An app note from MAXIM integrated on RGB color sensor and their capability to correct color deviation by providing feedback based on a reference color. Link here (PDF)

This application note will show how all the colors within the color gamut formed by red, green, and blue constants in a CIE plot can be measured and mapped with an RGB color sensor. This RGB sensor can also monitor the color output of LEDs in a display and/or provide feedback to maintain a reference color. An RGB sensor will also be mapped to measure the color temperature of practical light sources.

from Dangerous Prototypes https://ift.tt/2vYwVyg

Free PCB coupon via Facebook to 2 random commenters

BP

Every Friday we give away some extra PCBs via Facebook. This post was announced on Facebook, and on Monday we’ll send coupon codes to two random commenters. The coupon code usually go to Facebook ‘Other’ Messages Folder . More PCBs via Twitter on Tuesday and the blog every Sunday. Don’t forget there’s free PCBs three times every week:

Some stuff:

  • Yes, we’ll mail it anywhere in the world!
  • We’ll contact you via Facebook with a coupon code for the PCB drawer.
  • Limit one PCB per address per month, please.
  • Like everything else on this site, PCBs are offered without warranty.

We try to stagger free PCB posts so every time zone has a chance to participate, but the best way to see it first is to subscribe to the RSS feed, follow us on Twitter, or like us on Facebook.

from Dangerous Prototypes https://ift.tt/2vQgR1B

Multisensor LoRa device

p-tlmv2-600

Mare published a new build:

The described device is nearly matchbox-sized board (50 x 24 mm) packed with sensors. Auxilary board is 10x50mm with additional sensors. The module is developed around the Murata ABZ LoRa module, which integrates STM32L072 and samtech SX1276 in tiny 12.5 x 11.6 x 1.76 mm package.

More details at Mare & Gal Electronics.

from Dangerous Prototypes https://ift.tt/2r41z3l

How servo motors work and how to control servos using Arduino

p-Arduino-and-PCA9685-PWM-Servo-Driver-600

Dejan Nedelkovski over at HowToMechatronics shared detailed tutorial on how servo motors work and how to control servos using Arduino and PCA9685 PWM driver:

There are many types of servo motors and their main feature is the ability to precisely control the position of their shaft. A servo motor is a closed-loop system that uses position feedback to control its motion and final position.
In industrial type servo motors the position feedback sensor is usually a high precision encoder, while in the smaller RC or hobby servos the position sensor is usually a simple potentiometer. The actual position captured by these devices is fed back to the error detector where it is compared to the target position. Then according to the error the controller corrects the actual position of the motor to match with the target position.
In this tutorial we will take a detailed look at the hobby servo motors. We will explain how these servos work and how to control them using Arduino.

More details at HowToMechatronics.

Check out the video after the break.

 

from Dangerous Prototypes https://ift.tt/2FeLUmR