Building a DIY SMT pick & place machine with OpenPnP

overview1-600

Erich Styger has a nice write-up about building a DIY pick & place machine based on OpenPnP:

This article is about a project I have started back in January 2018. As for many of my projects, it took longer than anticipated.But now it is working, and the result is looking very good: a DIY automated pick and place machine to place parts on circuit boards. In the age of cheap PCBs, that machine closes the gap for small series of boards which have to be populated in a time consuming way otherwise.

See the full post on MCU on Eclipse blog.

Check out the video after the break.

 

from Dangerous Prototypes https://ift.tt/2tZqEip

Silicon die analysis: Inside an op amp with interesting “butterfly” transistors

die-600

An excellent in-depth look at theTL084 op amp by Ken Shirriff:

Some integrated circuits have very interesting dies under a microscope, like the chip below with designs that look kind of like butterflies. These patterns are special JFET input transistors that improved the chip’s performance. This chip is a Texas Instruments TL084 quad op amp and the symmetry of the four op amps is visible in the photo. (You can also see four big irregular rectangular regions; these are capacitors to stabilize the op amps.) In this article, I describe these components and the other circuitry in the chip and explain how it works. This article also includes an interactive chip explorer that shows each schematic component on the die and explains what it does.

See the full post on Ken Shirriff’s blog.

from Dangerous Prototypes https://ift.tt/2zb553w

#FreePCB via Twitter to 2 random RTs

IRToy-600x369

Every Tuesday we give away two coupons for the free PCB drawer via Twitter. This post was announced on Twitter, and in 24 hours we’ll send coupon codes to two random retweeters. Don’t forget there’s free PCBs three times a every week:

  • Hate Twitter and Facebook? Free PCB Sunday is the classic PCB giveaway. Catch it every Sunday, right here on the blog
  • Tweet-a-PCB Tuesday. Follow us and get boards in 144 characters or less
  • Facebook PCB Friday. Free PCBs will be your friend for the weekend

Some stuff:

  • Yes, we’ll mail it anywhere in the world!
  • Check out how we mail PCBs worldwide video.
  • We’ll contact you via Twitter with a coupon code for the PCB drawer.
  • Limit one PCB per address per month please.
  • Like everything else on this site, PCBs are offered without warranty.

We try to stagger free PCB posts so every time zone has a chance to participate, but the best way to see it first is to subscribe to the RSS feed, follow us on Twitter, or like us on Facebook.

from Dangerous Prototypes https://ift.tt/2Ku6OGr

DIY Arduino FM radio

ArtDecoFMRadio-600

Nick over at educ8s.tv shared detailed instructions of how to build this DIY Art Deco style FM Radio project using Arduino:

Let’s see what we are going to build today! As you can see, we are going to build an Art Deco style FM radio receiver. The design of this radio is based on this spectacular 1935 AWA radio. I discovered this old radio while searching online and also in this book about the most beautiful radios ever made. I loved the design of this radio so much that I wanted to have a similar one. So I devoted a month of my time to build my own.

Full details at educ8s.tv.

Check out the video after the break.

from Dangerous Prototypes https://ift.tt/2tXSv1y

Free PCB Sunday: Pick your PCB

BP-600x373

We go through a lot of prototype PCBs, and end up with lots of extras that we’ll never use. Every Sunday we give away a few PCBs from one of our past or future projects, or a related prototype. Our PCBs are made through Seeed Studio’s Fusion board service. This week two random commenters will get a coupon code for the free PCB drawer tomorrow morning. Pick your own PCB. You get unlimited free PCBs now – finish one and we’ll send you another! Don’t forget there’s free PCBs three times every week:

Some stuff:

  • Yes, we’ll mail it anywhere in the world!
  • Be sure to use a real e-mail in the address field so we can contact you with the coupon.
  • Limit one PCB per address per month please.
  • Like everything else on this site, PCBs are offered without warranty.
  • PCBs are scrap and have no value, due to limited supply it is not possible to replace a board lost in the post

Be the first to comment, subscribe to the RSS feed.

from Dangerous Prototypes https://ift.tt/2z1Cs8B

App note: Capacitive sensing: Direct vs remote liquid-level sensing performance analysis

an_ti_snoa935a

Capacitive liquid level sensing method comparison discussed in this app note from Texas Instruments. Link here (PDF)

Capacitive-based liquid level sensing is making its way into the consumer, industrial, and automotive markets due to its system sensitivity, flexibility, and low cost. With using TI’s capacitive sensing technology, the system flexibility allows designers to have the choice of placing the sensors directly on the container (direct sensing) or in close proximity to the container (remote sensing). Each configuration has its own advantages and disadvantages. This application note highlights the system differences and performance of direct and remote sensing to provide guidance in how capacitive-based liquid-level sensing is affected.

from Dangerous Prototypes https://ift.tt/2yV1Uwy

App note: Measuring liquid levels using hall effect sensors

an_infineon_liquid_lvl_measurement

App note from Infineon on methods used in liquid level measurement and how contactless hall effect sensors are the right choice for the job. Link here (PDF)

This application note is dedicated to liquid level sensing using non-contacting magnetic sensor technology. First, an overview of some liquid level sensor application requirements are given. Next, we will introduce some of the solutions that are employed today and are researched for future systems, including both contacting techniques as well as non-contacting methods. Magnetic sensing turns out to be a comparably easy and robust solution to tackle the problem and Infineon’s linear Hall sensor portfolio is presented. Different design aspects of a magnetic liquid level sensor, including magnetic circuit designs, are discussed. The last section introduces some of Infineon’s Hall effect sensors that are suitable for use in fuel level sensing.

from Dangerous Prototypes https://ift.tt/2KDhazF