New product: Raspberry Pi High Quality Camera on sale now at $50

We’re pleased to announce a new member of the Raspberry Pi camera family: the 12.3-megapixel High Quality Camera, available today for just $50, alongside a range of interchangeable lenses starting at $25.

NEW Raspberry Pi High Quality Camera

Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspbe…

It’s really rather good, as you can see from this shot of Cambridge’s finest bit of perpendicular architecture.

At 69 years, King’s College Chapel took only slightly longer to finish than the High Quality Camera.

And this similarly pleasing bit of chip architecture.

Ready for your closeup.

Raspberry Pi and the camera community

There has always been a big overlap between Raspberry Pi hackers and camera hackers. Even back in 2012, people (okay, substantially Dave Hunt) were finding interesting ways to squeeze more functionality out of DSLR cameras using their Raspberry Pi computers.

Dave’s water droplet photography. Still, beautiful.

The OG Raspberry Pi camera module

In 2013, we launched our first camera board, built around the OmniVision OV5647 5‑megapixel sensor, followed rapidly by the original Pi NoIR board, with infrared sensitivity and a little magic square of blue plastic. Before long, people were attaching them to telescopes and using them to monitor plant health from drones (using the aforementioned little square of plastic).

TJ EMSLEY Moon Photography

We like the Moon.

Sadly, OV5647 went end-of-life in 2015, and the 5-megapixel camera has the distinction of being one of only three products (along with the original Raspberry Pi 1 and the official WiFi dongle) that we’ve ever discontinued. Its replacement, built around the 8-megapixel Sony IMX219 sensor, launched in April 2016; it has found a home in all sorts of cool projects, from line-followers to cucumber sorters, ever since. Going through our sales figures while writing this post, we were amazed to discover we’ve sold over 1.7 million of these to date.

The limitations of fixed-focus

Versatile though they are, there are limitations to mobile phone-type fixed-focus modules. The sensors themselves are relatively small, which translates into a lower signal-to-noise ratio and poorer low-light performance; and of course there is no option to replace the lens assembly with a more expensive one, or one with different optical properties. These are the shortcomings that the High Quality Camera is designed to address.

Photograph of a Raspberry Pi 4 captured by the Raspberry Pi Camera Module v2
Photograph of a Raspberry Pi 4 captured by the Raspberry Pi High Quality Camera

Raspberry Pi High Quality Camera

Raspberry Pi High Quality Camera, without a lens attached

Features include:

  • 12.3 megapixel Sony IMX477 sensor
  • 1.55μm × 1.55μm pixel size – double the pixel area of IMX219
  • Back-illuminated sensor architecture for improved sensitivity
  • Support for off-the-shelf C- and CS-mount lenses
  • Integrated back-focus adjustment ring and tripod mount

We expect that over time people will use quite a wide variety of lenses, but for starters our Approved Resellers will be offering a couple of options: a 6 mm CS‑mount lens at $25, and a very shiny 16 mm C-mount lens priced at $50.

Our launch-day lens selection.

Read all about it

Also out today is our new Official Raspberry Pi Camera Guide, covering both the familiar Raspberry Pi Camera Module and the new Raspberry Pi High Quality Camera.

We’ll never not be in love with Jack’s amazing design work.

Our new guide, published by Raspberry Pi Press, walks you through setting up and using your camera with your Raspberry Pi computer. You’ll also learn how to use filters and effects to enhance your photos and videos, and how to set up creative projects such as stop-motion animation stations, wildlife cameras, smart doorbells, and much more.

Aardman ain’t got nothing on you.

You can purchase the book in print today from the Raspberry Pi Press store for £10, or download the PDF for free from The MagPi magazine website.

Credits

As with every product we build, the High Quality Camera has taught us interesting new things, in this case about producing precision-machined aluminium components at scale (and to think we thought injection moulding was hard!). Getting this right has been something of a labour of love for me over the past three years, designing the hardware and getting it to production. Naush Patuck tuned the VideoCore IV ISP for this sensor; David Plowman helped with lens evaluation; Phil King produced the book; Austin Su provided manufacturing support.

We’d like to acknowledge Phil Holden at Sony in San Jose, the manufacturing team at Sony UK Tec in Pencoed for their camera test and assembly expertise, and Shenzhen O-HN Optoelectronic for solving our precision engineering challenges.

FAQS

Which Raspberry Pi models support the High Quality Camera?

The High Quality Camera is compatible with almost all Raspberry Pi models, from the original Raspberry Pi 1 Model B onward. Some very early Raspberry Pi Zero boards from the start of 2016 lack a camera connector, and other Zero users will need the same adapter FPC that is used with Camera Module v2.

What about Camera Module v2?

The regular and infrared versions of Camera Module v2 will still be available. The High Quality Camera does not supersede it. Instead, it provides a different tradeoff between price, performance, and size.

What lenses can I use with the High Quality Camera?

You can use C- and CS-mount lenses out of the box (C-mount lenses use the included C-CS adapter). Third-party adapters are available from a wide variety of lens standards to CS-mount, so it is possible to connect any lens that meets the back‑focus requirements.

We’re looking forward to seeing the oldest and/or weirdest lenses anyone can get working, but here’s one for starters, courtesy of Fiacre.

Do not try this at home. Or do: fine either way.

The post New product: Raspberry Pi High Quality Camera on sale now at $50 appeared first on Raspberry Pi.

Noticia Original

Tutorial: Rename, copy or clone Eclipse projects with MCUXpresso

Erich writes:

Especially in a lab or classroom environment it is convenient to start with a template project, and then explore different ways to shape the project for different needs. As for any IDE of this world, this requires an understanding of the inner workings to get it right. So in this article I show how to copy, clone or rename properly an Eclipse ‘template’ project in the MCUXpresso IDE.

More details at mcuoneclipse.com.

from Dangerous Prototypes https://ift.tt/3f5z7Gv

RetroPie for Raspberry Pi 4: video game emulation on our fastest-ever device

For many of you out there, your first taste of Raspberry Pi is using it as a retro gaming emulator running RetroPie. Simple to install and use, RetroPie allows nostalgic gamers (and parents trying to educate their kids) the ability to play old-schoolskool classics on any monitor in their home, with cheap USB game controllers or models from modern consoles.

GuzziGuy RetroPie Table

Mid-century-ish Retro Games Table’ by Reddit user GuzziGuy

And because our community is so wonderfully inventive, Raspberry Pis running RetroPie have found themselves in homebrew gaming cabinets, old console casings, and even game cartridges themselves.

[Original Showcase Video] Pi Cart: A Raspberry Pi Retro Gaming Rig in an NES Cartridge

I put a Raspberry Pi Zero (and 2,400 vintage games) into an NES cartridge and it’s awesome. Powered by RetroPie. — See the full build video: https://www.yo…

Along came Raspberry Pi 4

When we announced Raspberry Pi 4 last year, a much faster device with more RAM than we’d previously offered, the retro gaming enthusiasts of the world quickly took to prodding and poking the current version of the RetroPie software to get it to work on our new, more powerful computer. And while some succeeded, those gamers not as savvy with manually updating the RetroPie software had to wait for a new image.

Retro Pie 4.6

And so yesterday, to much hurrah from the Raspberry Pi and retro gaming community, the RetroPie team announced the release of image version 4.6 with beta Raspberry Pi 4 support!

One of the biggest changes with the update is the move to Raspbian Buster, the latest version of our operating system, from Raspbian Stretch. And while they’re currently still advertising the Raspberry Pi 4 support as in beta, version 4.6 works extremely well on our newest model.

Update today!

Visit the RetroPie website today to download the 4.6 image, and if you have any difficulties with the software, visit the RetroPie forum to find help, support, and a community of like-minded gamers.

The post RetroPie for Raspberry Pi 4: video game emulation on our fastest-ever device appeared first on Raspberry Pi.

Noticia Original

DIY Arduino RC receiver for RC models and Arduino projects

Dejan @ howtomechatronics.com shows how to make an Arduino based RC receiver:

Now these two devices can easily communicate and we can use them for controlling many things wirelessly. I will explain how everything works through few examples. In the first example we will use this Arduino RC receiver to control a simple car consisting of two DC motors. In the second example I will show you how to control brushless motors and servos, which are common components found in many commercial RC planes, boats, cars and so on. If we know how to control them, we can easily modify and control many RC models with our own custom-build Arduino transmitter.
As a third example I will show you how I modified and used this Arduino based RC system to control a commercial RC car.

More details on How To Mechatronics Project page.

Check out the video after the break.

from Dangerous Prototypes https://ift.tt/3aMOYXk

These loo rolls formed a choir

Have all of y’all been hoarding toilet roll over recent weeks in an inexplicable response to the global pandemic, or is that just a quirk here in the UK? Well, the most inventive use of the essential household item we’ve ever seen is this musical project by Max Björverud.

Ahh, the dulcet tones of wall-mounted toilet roll holders, hey? This looks like one of those magical ‘how do they do that?’ projects but, rest assured, it’s all explicable.

Max explains that Singing Toilet is made possible with a Raspberry Pi running Pure Data. The invention also comprises a HiFiBerry Amp, an Arduino Mega, eight hall effect sensors, and eight magnets. The toilet roll holders are controlled with the hall effect sensors, and the magnets connect to the Arduino Mega.

In this video, you can see the hall effect sensor and the 3D-printed attachment that holds the magnet:

Max measures the speed of each toilet roll with a hall effect sensor and magnet. The audio is played and sampled with a Pure Data patch. In the comments on his original Reddit post, he says this was all pretty straight-forward but that it took a while to print a holder for the magnets, because you need to be able to change the toilet rolls when the precious bathroom tissue runs out!

Max began prototyping his invention last summer and installed it at creative agency Snask in his hometown of Stockholm in December.

The post These loo rolls formed a choir appeared first on Raspberry Pi.

Noticia Original