App note: P-channel power MOSFETs and applications

Another app note from IXYS on P-Channel power MOSFET application. Link here (PDF)

IXYS P-Channel Power MOSFETs retain all the features of comparable N-Channel Power MOSFETs such as very fast switching, voltage control, ease of paralleling and excellent temperature stability. These are designed for applications that require the convenience of reverse polarity operation. They have an n-type body region that provides lower resistivity in the body region and good avalanche characteristics because parasitic PNP transistor is less prone to turn-on. In comparison with Nchannel Power MOSFETs with similar design features, P-channel Power MOSFETs have better FBSOA (Forward Bias Safe Operating Area) and practically immune to Single Event Burnout phenomena. Main advantage of P-channel Power MOSFETs is the simplified gate driving technique in high-side (HS) switch position.

from Dangerous Prototypes https://ift.tt/3bZ1dAz

App note: Parallel operation of IGBT discrete devices

Guidelines for parallel operation of IGBT devices discuss in this app note from IXYS. Link here (PDF)

As applications for IGBT components have continued to expand rapidly, semiconductor manufacturers have responded by providing IGBTs in both discrete and modular packages to meet the needs of their customers. Discrete IGBTs span the voltage range of 250V to 1400V and are available up to 75A (DC), which is the maximum current limit for both the TO-247 and TO-264 terminals. IGBT modules cover the same voltage range but, due to their construction, can control currents up to 1000A today. However, on an Ampere per dollar basis, the IGBT module is more expensive so that for cost-sensitive applications, e.g. welding, low voltage motor control, small UPS, etc., designs engineers would like to parallel discrete IGBT devices.

from Dangerous Prototypes https://ift.tt/3cYDPVp