App note: Cable compensation of a primary-side-regulation power supply

Another tech note from Richtek on power supply regulation with cable compensation. Link here

Cable compensation has been used to compensate the voltage drop due to cable impedance for providing a regulated charging voltage in battery charger applications. This application note uses a novel cable compensation method, which called cable minus compensation, as an example to describe the concept and design criteria for the cable compensation of a PSR flyback converter. The analytic results are also verified by the simulation results.

from Dangerous Prototypes

App note: Analysis of buck converter efficiency

Tech note from Richtek on buck converter profiling. Link here

The synchronous buck circuit is wildly used to provide non-isolated power for low voltage and high current supply to system chip. To realize the power loss of synchronous buck converter and to improve efficiency is important for power designer. The application note introduces the analysis of buck converter efficiency and realizes major power component loss in synchronous buck converter.

from Dangerous Prototypes

The ArduINA226 power monitor

ArduPicLab published the details on how to build a current, voltage and power datalogger with Arduino and the INA226 module:

In the past I have developed various projects of ammeters based on Hall effect current sensors such as the ACS712, or on High-Side Current-Sense Amplifiers such as the MAX4080SASA or made with operational amplifiers. All these systems have an analog output which must then be digitized. The INA226 sensor has a digital output and incorporates a 16-bit ADC for which a high accuracy and precision is obtained.

from Dangerous Prototypes

MCP4141 based digital potentiometer

Dilshan Jayakody has been working on an open-source hardware project MCP4141 based digital potentiometer, that is available on GitHub:

The main objective of this project is to create an experimental prototype of a digital potentiometer using Microchip’s MCP4141 IC. MCP4141 is available with end-to-end resistances of 5KΩ, 10KΩ, 50kΩ, and 100KΩ. This potentiometer-module can drive MCP4141 with any of the above mention resistances.

from Dangerous Prototypes

DIY motion simulator

Bogdan Berg has been working on a DIY motion simulator:

As you may have seen from some of my other posts on this blog, motorsports and cars in general are one of my passions. I try to attend at least couple track days in a season, and enjoy circuit racing greatly. However, costs can add up quickly, and living in Seattle leaves us with a lot of rainy days through fall/winter/spring, somewhat limiting the time window for optimal conditions on the track. Although racing in rain as an art in itself… 😉

See the full post at

Check out the video after the break.

from Dangerous Prototypes

Inside a Titan missile guidance computer

Ken Shirriff has written an excellent in-depth look at a Titan missile guidance computer:

I’ve been studying the guidance computer from a Titan II nuclear missile. This compact computer was used in the 1970s to guide a Titan II nuclear missile towards its target or send a Titan IIIC rocket into the proper orbit. The computer worked in conjunction with an Inertial Measurement Unit (IMU), a system of gyroscopes and accelerometers that tracked the rocket’s position and velocity.

See the full post at

from Dangerous Prototypes

DIY long lasting voltage regulator circuit for Raspberry Pi

Jithin @ writes:

Raspberry Pi is simple, handy and cheap yet powerful single board computers of all time. It has USB ports to connect hardware such as pen drive, keyboard, mouse, HDMI port for display out, 3.5 mm port for audio and several GPIO pins to work with embedded projects, all of which can be powered using a mobile charger. You can even make it portable by simply connecting the mini USB port to a mobile phone power bank so that you can use your pi on the go. But if you connect more USB devices and use the GPIO pins, the power bank will drain off quickly. In this post, I will tell you how i made my own power supply unit using a Lithium Polymer battery and a voltage regulator.

Project info at

from Dangerous Prototypes

Building my own 50Ah LiFePO4 lithium battery pack

Kenneth Finnegan posted his DIY 50Ah LiFePO4 lithium battery pack build:

Several years ago, I had purchased a 20Ah 12V Lithium Iron battery pack from Bioenno for my various 12VDC projects. To help protect it, I ultimately built it up into a 50cal ammo can with a dual panel-mount PowerPole connector on the outside, which has proven really nice as far as battery boxes go:
*20Ah is a decent battery capacity for a small load
*The packaged Bioenno pack left some space inside the box to also store the charger it came with, some PowerPole accessories, etc
*The fact that you’re able to close up the box and use the power connectors on the outside once you’re using it is real nice

More details on The life of Kenneth blog.

from Dangerous Prototypes

Low cost open source ventilator

Johnny Chung Lee writes, “In the event that COVID-19 hospitalizations exhaust the availability of FDA approved ventilators. I started documenting a a process of converting a low-cost CPAP (Continuous Positive Airway Pressure) blower into a rudimentary Ventilator that could help with breathing during an acute respiratory attack. If interested, follow along the Github Project

More details on Procrastineering blog.

from Dangerous Prototypes

Looking inside a vintage Soviet TTL logic integrated circuit

Ken Shirriff examines a 1980s chip used in a Soyuz space clock:

The clock is built from TTL integrated circuits, a type of digital logic that was popular in the 1970s through the 1990s because it was reliable, inexpensive, and easy to use. (If you’ve done hobbyist digital electronics, you probably know the 7400-series of TTL chips.) A basic TTL chip contained just a few logic gates, such as 4 NAND gates or 6 inverters, while a more complex TTL chip implemented a functional unit such as a 4-bit counter. Eventually, TTL lost out to CMOS chips (the chips in modern computers), which use much less power and are much denser.

More details on Ken Shirriff’s blog.

from Dangerous Prototypes