The Raspberry Pi shop, one month in

Five years ago, I spent my first day working at the original Pi Towers (Starbucks in Cambridge). Since then, we’ve developed a whole host of different products and services which our customers love, but there was always one that we never got around to until now: a physical shop. (Here are opening times, directions and all that good stuff.)

Years ago, my first idea was rather simple: rent a small space for the Christmas month and then open a pop-up shop just selling Raspberry Pis. We didn’t really know why we wanted to do it, but suspected it would be fun! We didn’t expect it to take five years to organise, but last month we opened the first Raspberry Pi store in Cambridge’s Grand Arcade – and it’s a much more complete and complicated affair than that original pop-up idea.

Given that we had access to a bunch of Raspberry Pis, we thought that we should use some of them to get some timelapse footage of the shop being set up.

Raspberry Pi Shop Timelapse

Uploaded by Raspberry Pi on 2019-03-22.

The idea behind the shop is to reach an audience that wouldn’t necessarily know about Raspberry Pi, so its job is to promote and display the capabilities of the Raspberry Pi computer and ecosystem. But there’s also plenty in there for the seasoned Pi hacker: we aim to make sure there’s something for you whatever your level of experience with computing is.

Inside the shop you’ll find a set of project centres. Each one contains a Raspberry Pi project tutorial or example that will help you understand one advantage of the Raspberry Pi computer, and walk you through getting started with the device. We start with a Pi running Scratch to control a GPIO, turning on and off an LED. Another demos a similar project in Python, reading a push button and lighting three LEDs (can you guess what colour the three LEDs are?) –  you can also see project centres based around Kodi and RetroPi demonstrating our hardware (the TV-HAT and the Pimoroni Picade console), and an area demonstrating the various Raspberry Pi computer options.

store front

There is a soft seating area, where you can come along, sit and read through the Raspberry Pi books and magazines, and have a chat with the shop staff.  Finally we’ve got shelves of stock with which you can fill yer boots. This is not just Raspberry Pi official products, but merchandise from all of the ecosystem, totalling nearly 300 different lines (with more to come). Finally, we’ve got the Raspberry Pi engineering desk, where we’ll try to answer even the most complex of your questions.

Come along, check out the shop, and give us your feedback. Who knows – maybe you’ll find some official merchandise you can’t buy anywhere else!

The post The Raspberry Pi shop, one month in appeared first on Raspberry Pi.

Noticia Original

The future of 3D printing with Dr Adrian Bowyer | HackSpace magazine #17

You might have heard of RepRap. It’s the project that began at the University of Bath in 2005 with the aim of creating a self-replicating, open-source 3D printer. As is the nature of open source, many other projects have spun off from RepRap, including the Prusa i3. Without RepRap, the field of 3D printing would be much smaller, less advanced, and a lot less open.

Adrian was made an MBE in the New Year Honours list, for services to 3D printing.

We drove many miles through wind and rain to meet Dr Adrian Bowyer, co-founder of the RepRap project who now, along with his daughter Sally, runs RepRap Ltd. The two of them are still pushing boundaries, raising standards, and lowering prices, so we sat down to talk about RepRap and where the 3D printing industry is heading.

It may be an obvious question, but why did you start the RepRap project?

Adrian Bowyer: Curiosity. I have always been interested in the idea of self-replicating machines ever since I was a child. When my university acquired some commercial 3D printers, as soon as they arrived I thought, ah, we’ve got a technology here that is sufficiently versatile that it stands a chance of being able to copy itself. Having had that idea, the very next question that occurs to your brain is: will this work? And that was the genesis of the project. I wanted to find out if we could make a machine that could print a significant fraction of its own parts and self-replicate.

It was literally the case that, at the height of development of RepRap in Bath 2008/2009, I was effectively running, in terms of numbers of staff, the biggest research project in any UK university. I wasn’t paying any of them of course, and they were distributed all over the world, but if you counted them up, there were more of them working with me than were working in any other single research project in any other university in the UK.

What are you doing with RepRap at the moment?

AB: We’re looking at distributed processor RepRaps, so instead of having a single CPU, we put a single CPU on each device in the machine, such as the heaters, the motors, and so on. This isn’t a new idea; other people have tried this in the past. From the perspective of Raspberry Pi, that’s interesting because such a machine wouldn’t need real-time response from the processor that’s at the heart of the machine.

If you’ve got a Linux system running on something, it’s not great for real-time control, because of interrupts. Whereas the sort of system we’re working on would have a Raspberry Pi in the middle, with a load of Arduinos around it. You can hand over the hardware timing to the Arduino, which, being dedicated, can be guaranteed to generate a poll every 20 microseconds or whatever it is. Whereas the thing sitting in the middle, doing the control, just has to be able to respond every few milliseconds. That’s something we’re putting together with Raspberry Pis and Arduinos.

Each Arduino is monitoring and controlling one aspect of the printer

One of the reasons that we want to do it is that we’re looking at making larger machines, and also a machine that not only is a 3D printer, but also incorporates a plasma cutter. Now, the thing about a plasma cutter is that it generates an enormous amount of electronic noise. You get lots of interference from it. So the ideal way to send electrical signals around the machine is not using electricity, but optics. So what we would be doing would be setting up a machine with optical communication between each of its component parts and the controller, so that electrical interference isn’t a problem, and, in order to do that [the system] has to be distributed in the way that I’ve just described.

Where, in general, do you think 3D printing is heading?

AB: The analogy I often draw is with washing clothes, which went through three stages: it started off with us washing our own clothes. In the scullery or the kitchen, you’d wash your clothes once a week. And then in Victorian times, as economies of scale kicked in, there would be a town laundry, where you would send your clothes and they’d come back clean. But now we have a robot in the kitchen that can wash our clothes. It’s come back to us, this time automated.

Making stuff in general, it seems to me, is going through that progression, just 100 years later. It started off that, if you needed a gate hinge, you went to the blacksmith in your village. He would make you a gate hinge. Now if you want a gate hinge, you go to the shop and buy one, and it was made halfway around the world. But if we bring some of that back into our cities, it’s like bringing our washing back from the town laundry into our homes. As long as it’s automated: the rule seems to be that if something is automatable so that people don’t have to pay a lot of attention, and it’s low-cost enough, people can take it back to themselves, and economies of scale get reversed.

This ukulele was printed in two parts. It’s playable, and sounds great.

Finally, congratulations on your MBE!

AB: That’s very kind! The certificate is an impressive thing. Signed by Her Majesty the Queen, and by Prince Philip as the person who is in charge of knighthoods and such.

I’m going up in May to Buckingham Palace to have it pinned on my chest, so that’ll be interesting. The commendation says: “Inventor: for services to 3D printing.” Short and to the point.

Read more

The full interview is in HackSpace magazine issue 17, where we also help you develop your Arduino skill, look at an open-source lathe, design a PCB in KiCad, build a polyphonic synthesizer, and much more.

Buy your copy now from the Raspberry Pi Press store, major newsagents in the UK, or Barnes & Noble, Fry’s, or Micro Center in the US. Or, download your free PDF copy from the HackSpace magazine website.

Never miss an issue

Subscribe today and get three issues for just £5 (in the UK — additional postage charges apply elsewhere)!

The post The future of 3D printing with Dr Adrian Bowyer | HackSpace magazine #17 appeared first on Raspberry Pi.

Noticia Original

The Junk Drum Machine

I do not really have any spare time. (Toddler, job, very demanding cat, lots of LEGO to tidy up.) If I did, I like to imagine that I’d come up with something like this to do with it.

junk drum machine

Want to see this collection of junk animate? Scroll down for video.

From someone calling himself Banjowise (let me know what your real name is in the comments, please, so I can credit you properly here!), here is a pile of junk turned into a weirdly compelling drum machine.

Mechanically speaking, this isn’t too complicated: just a set of solenoids triggered by a Raspberry Pi. The real clever is in the beauteous, browser-based step sequencer Banjowise has built to program the solenoids to wallop things in beautiful rhythm. And in the beauteous, skip-sourced tchotchkes that Banjowise has found for them to wallop. Generously, he’s made full instructions on making your own available on Instructables. Use any bits and bobs you can get your hands on if old piano hammers and crocodile castanets are not part of the detritus kicking around your house.

Warning: this video is weirdly compelling.

Automabeat – A Raspberry Pi Mechanical Robotic Junk Drum Machine

My Raspberry Pi based drum / percussion machine. Consisting of 8 12v solenoids, a relay, wooden spoons, a Fullers beer bottle, a crocodile maraca and a few other things. An Instructable on how to build your own is here: https://ift.tt/2u41cYs, or take a look at: https://ift.tt/2ufF8dG

The sequencer is lovely: a gorgeously simple user interface that you can run on a tablet, your phone, or anything else with a browser (and it’s very easily adaptable to other projects). The web interface lets Python trigger the GPIO pins over web sockets. There’s a precompiled version available for people who’ve followed Banjowise’s comprehensive wiring instructions, but you can also get the source code from GitHub.

Sequencer UI

I think I’m getting good, but I can handle criticism.

We love it. Now please excuse me. I need a little while to search online for crocodile castanets.

The post The Junk Drum Machine appeared first on Raspberry Pi.

Noticia Original

LED Matrix Cylinder — a blinkenlights tube

We see lots of addressable LED projects, but there was something weirdly charming and very pretty about this cylinder of squares. It’d make for a lovely interactive nightlight in a kids’ room, or for a grown-up lighting feature that you could also use as a news ticker or something that monitors your in-home IoT devices. Once you’ve built something like this, you’re only limited by your imagination — and it’s nice enough to display in your home.

This project is from MakeTeeVee on Instructables. The cleverness is in the layout and the really meticulous execution: vertical strips of LEDs form a cylinder in a laser-cut frame, with a very thin layer of wood veneer glued around the whole thing to act as a diffuser. It’s simple, but really rather beautiful and very effective.

diffuser, diffusing

In the case to the side is the Raspberry Pi Zero that’s driving the whole thing. Here it is doing its thing:

LED matrix cylinder WS2812 Raspberry Pi Zero

LED matrix cylinder based on WS2812 LEDs and some laser cutter parts. https://ift.tt/2VCUSDd https://ift.tt/2Hb0H7O #WS2812 #LEDcylinder

MakeTeeVee has built a Pygame-based simulator of the whole matrix so you can program it to do exactly what you want: scroll marquee text, make pretty patterns, twinkle at random, display images: the world’s your (pixellated) oyster. The code’s available at GitHub.

GUI for programming cylinder

Thanks, MakeTeeVee — if you’d like to leave your real name below, we’ll credit you properly here!

The post LED Matrix Cylinder — a blinkenlights tube appeared first on Raspberry Pi.

Noticia Original

Laser-engraved Raspberry Pi hologram

Inspired by an old episode of Pimoroni’s Bilge Tank, and with easy access to the laser cutter at the Raspberry Pi Foundation office, I thought it would be fun to create a light-up multi-layered hologram using a Raspberry Pi and the Pimoroni Unicorn pHAT.

Raspberry Pi layered light

Read more –

Break it to make it

First, I broke down the Raspberry Pi logo into three separate images — the black outline, the green leaves, and the red berry.

RASPBERRY PI HOLOGRAM
RASPBERRY PI HOLOGRAM
RASPBERRY PI HOLOGRAM

Fun fact: did you know that Pimoroni’s Paul Beech designed this logo as part of the ‘design us a logo’ contest we ran all the way back in August 2011?

Once I had the three separate files, I laser-engraved them onto 4cm-wide pieces of 3mm-thick clear acrylic. As there are four lines of LEDs on the Unicorn pHAT, I cut the fourth piece to illuminate the background.

RASPBERRY PI HOLOGRAM

To keep the engraved acrylic pieces together, I cut out a pair of acrylic brackets (see above) with four 3mm indentations. Then, after a bit of fiddling with the Unicorn pHAT library, I was able to light the pHAT’s rows of LEDs in white, red, green, and white.

RASPBERRY PI HOLOGRAM

The final result looks pretty spectacular, especially in the dark, and you can build on this basic idea to create fun animations — especially if you use a HAT with more rows of LEDs.

Iterations

This is just a prototype. I plan on building a sturdier frame for the pieces that securely fits a Raspberry Pi Zero W and lets users replace layers easily. As with many projects, I’m sure this will grow and grow as each interaction inspires a new add-on.

How would you build upon this basic principle?

Oh…

…we also laser-engraved this Cadbury’s Creme Egg.

The post Laser-engraved Raspberry Pi hologram appeared first on Raspberry Pi.

Noticia Original

Coding Space Invaders’ disintegrating shields | Wireframe #9

They add strategy to a genre-defining shooter. Andrew Gillett lifts the lid on Space Invaders’ disintegrating shields.

Wireframe 9 Space Invaders

Released in 1978, Space Invaders introduced ideas so fundamental to video games that it’s hard to imagine a time before them. And it did this using custom-made hardware which by today’s standards is unimaginably slow.

Space Invaders ran on an Intel 8080 CPU operating at 2MHz. With such meagre processing power, merely moving sprites around the screen was a struggle. In modern 2D games, at the start of each frame the entire screen is reset, then all objects are displayed.

For Space Invaders’ hardware, this process would have been too slow. Instead, each time a sprite needs to move, the game first erases the sprite from the screen, then redraws it in the new position. The game also updates only one alien per frame — which leads to the effect of the aliens moving faster when there are fewer of them. These techniques cut down the number of pixels which need to be updated each frame, from nearly 60,000 to around a hundred.

Wireframe 9 Space Invaders

One of Space Invaders’ most notable features is its four shields. These provide shelter from enemy fire, but deteriorate after repeated hits. The player can take advantage of the shields’ destructible nature — by repeatedly firing at the same place on a shield’s underside, a narrow gap can be created which can then be used to take out enemies. (Of course, the player can also be shot through the same gap.)

The system of updating only the minimum necessary number of pixels works well as long as there’s no need for objects to overlap. In the case of the shields, though, what happens when objects do overlap is fundamental to how they work. Whenever a shot hits something, it’s replaced by an explosion sprite. A few frames later, the explosion sprite is deleted from the screen. If the explosion sprite overlapped with a shield, that part of the shield is also deleted.

Wireframe 9 Space Invaders

Here’s a code snippet that shows Andrew’s Space Invaders-style disintegrating shields working in Python. To get it running on your system, you’ll need to install Pygame Zero — you can find full instructions here. And download the above code here.

The code to the right displays four shields, and then bombards them with a series of shots which explode on impact. I’m using sprites which have been scaled up by ten, to make it easier to see what’s going on.

We first create two empty lists — one to hold details of any shots on screen, as well as explosions. These will be displayed on the screen every frame. Each entry in the shots list will be a dictionary data structure containing three values: a position, the sprite to be displayed, and whether the shot is in ‘exploding’ mode — in which case it’s displayed in the same position for a few frames before being deleted.

The second list, to_delete, is for sprites which need to be deleted from the screen. For simplicity, I’m using separate copies of the shot and explosion sprites where the white pixels have been changed to black (the other pixels in these sprites are set as transparent).

The function create_random_shot is called every half-second. The combination of dividing the maximum value by ten, choosing a random whole number between zero and the maximum value, and then multiplying the resulting random number by ten, ensures that the chosen X coordinate is a multiple of ten.


Wireframe 9 Space Invaders
Wireframe 9 Space Invaders

Andrew’s Space Invaders shields up and running in Pygame Zero.

In the draw function, we first check to see if it’s the first frame, as we only want to display the shields on that frame. The screen.blit method is used to display sprites, and Pygame Zero’s images object is used to specify which sprite should be displayed. We then display all sprites in the to_delete list, after which we reset it to being an empty list. Finally we display all sprites in the shots list.

Wireframe 9 Space Invaders

In the update function, we go through all sprites in the shots list, in reverse order. Going through the list backwards avoids problems that can occur when deleting items from a list inside a for loop. For each shot, we first check to see if it’s in ‘exploding’ mode. If so, its timer is reduced each frame — when it hits zero we add the shot to the to_delete list, then delete it from shots.

If the item is a normal shot rather than an explosion, we add its current position to to_delete, then update the shot’s position to move the sprite down the screen. We next check to see if the sprite has either gone off the bottom of the screen or collided with something. Pygame’s get_at method gives us the colour of a pixel at a given position. If a collision occurs, we switch the shot into ‘exploding’ mode — the explosion sprite will be displayed for five frames.

You can read the rest of the feature in Wireframe issue 9, available now in Tesco, WHSmith, and all good independent UK newsagents.

Or you can buy Wireframe directly from us – worldwide delivery is available. And if you’d like to own a handy digital version of the magazine, you can also download a free PDF.

Make sure to follow Wireframe on Twitter and Facebook for updates and exclusives, and for subscriptions, visit the Wireframe website to save 49% compared to newsstand pricing!

The post Coding Space Invaders’ disintegrating shields | Wireframe #9 appeared first on Raspberry Pi.

Noticia Original

Win a Raspberry Pi 3B+ and signed case this Pi Day 2019

Happy Pi Day everyone

What is Pi Day, we hear you ask? It’s the day where countries who display their date as month/day/year celebrate the first three digits of today displaying Pi, or 3.14.2019 to be exact.

In celebration of Pi Day, we’re running a Raspberry Pi 3B+ live stream on YouTube. Hours upon hours of our favourite 3B+ in all it’s glorious wonderment.

PI DAY 2019

Celebrate Pi Day with us by watching this Pi

At some point today, we’re going to add a unique hashtag to that live stream, and anyone who uses said hashtag across Instagram and/or Twitter* before midnight tonight (GMT) will be entered into a draw to win a Raspberry Pi Model 3 B+ and an official case, the latter of which will be signed by Eben Upton himself.

Raspberry Pi - PI Day 2019

So sit back, relax, and enjoy the most pointless, yes wonderful, live stream to ever reach the shores of YouTube!

*For those of you who don’t have a Twitter or Instagram account, you can also comment below with the hashtag when you see it.

The post Win a Raspberry Pi 3B+ and signed case this Pi Day 2019 appeared first on Raspberry Pi.

Noticia Original

Play Heverlee’s Sjoelen and win beer

Chances are you’ve never heard of the Dutch table shuffleboard variant Sjoelen. But if you have, then you’ll know it has a basic premise – to slide wooden pucks into a set of four scoring boxes – but some rather complex rules.

Sjoelen machine

Uploaded by Grant Gibson on 2018-07-10.

Sjoelen

It may seem odd that a game which relies so much on hand-eye coordination and keeping score could be deemed a perfect match for a project commissioned by a beer brand. Yet Grant Gibson is toasting success with his refreshing interpretation of Sjoelen, having simplified the rules and incorporated a Raspberry Pi to serve special prizes to the winners.

“Sjoelen’s traditional scoring requires lots of addition and multiplication, but our version simply gives players ten pucks and gets them to slide three through any one of the four gates within 30 seconds,” Grant explains.

As they do this, the Pi (a Model 3B) keeps track of how many pucks are sliding through each gate, figures how much time the player has left, and displays a winning message on a screen. A Logitech HD webcam films the player in action, so bystanders can watch their reactions as they veer between frustration and success.

Taking the plunge

Grant started the project with a few aims in mind: “I wanted something that could be transported in a small van and assembled by a two-person team, and I wanted it to have a vintage look.” Inspired by pinball tables, he came up with a three-piece unit that could be flat-packed for transport, then quickly assembled on site. The Pi 3B proved a perfect component.

Grant has tended to use full-size PCs in his previous builds, but he says the Pi allowed him to use less complex software, and less hardware to control input and output. He used Python for the input and output tasks and to get the Pi to communicate with a full-screen Chromium browser, via JSON, in order to handle the scoring and display tasks in JavaScript.

“We used infrared (IR) sensors to detect when a puck passed through the gate bar to score a point,” Grant adds. “Because of the speed of the pucks, we had to poll each of the four IR sensors over 100 times per second to ensure that the pucks were always detected. Optimising the Python code to run fast enough, whilst also leaving enough processing power to run a full-screen web browser and HD webcam, was definitely the biggest software challenge on this project.”

Bottoms up

The Raspberry Pi’s GPIO pins are used to trigger the dispensing of a can of Heverlee beer to the winner. These are stocked inside the machine, but building the vending mechanism was a major headache, since it needed to be lightweight and compact, and to keep the cans cool.

No off-the-shelf vending unit offered a solution, and Grant’s initial attempts with stepper motors and clear laser-cut acrylic gears proved disastrous. “After a dozen successful vends, the prototype went out of alignment and started slicing through cans, creating a huge frothy fountain of beer. Impressive to watch, but not a great mix with electronics,” Grant laughs.

Instead, he drew up a final design that was laser‑cut from poplar plywood. “It uses automotive central locking motors to operate a see-saw mechanism that serve the cans. A custom Peltier-effect heat exchanger, and a couple of salvaged PC fans, keep the cans cool inside the machine,” reveals Grant.

“I’d now love to make a lightweight version sometime, perhaps with a folding Sjoelen table and pop-up scoreboard screen, that could be carried by one person,” he adds. We’d certainly drink to that.

More from The MagPi magazine

Get your copy now from the Raspberry Pi Press store, major newsagents in the UK, or Barnes & Noble, Fry’s, or Micro Center in the US. Or, download your free PDF copy from The MagPi magazine website.

MagPi 79 cover

Subscribe now

Subscribe to The MagPi on a monthly, quarterly, or twelve-monthly basis to save money against newsstand prices!

Twelve-month print subscribers get a free Raspberry Pi 3A+, the perfect Raspberry Pi to try your hand at some of the latest projects covered in The MagPi magazine.

The post Play Heverlee’s Sjoelen and win beer appeared first on Raspberry Pi.

Noticia Original

FREE NOODS with FOODBEAST and Nissin

Push a button and share a hashtag to get free ramen, games, or swag with the Dream Machine, a Raspberry Pi–driven vending machine built by FOODBEAST and Nissin.

foodbeast.com on Twitter

This Instagram-powered vending machine gives away FREE @OrigCupNoodles and VIDEO GAMES 🍜🎮!! Where should it travel next? #ad https://t.co/W0YyWOCFVv

Raspberry Pi and marketing

Digital viral marketing campaigns are super popular right now, thanks to the low cost of the technology necessary to build bespoke projects for them. From story-telling phoneboxes to beer-pouring bicycles, we see more and more examples of such projects appear in our inbox every week.

The latest campaign we like is the Dream Machine, a retrofit vending machine that dispenses ramen noodles, video games, and swag in exchange for the use of an Instagram hashtag.

Free ramen from FOODBEAST and Nissin

With Dream Machines in Torrance, California and Las Vegas, Nevada, I’ve yet to convince Liz that it’s worth the time and money for me to fly out and do some field research. But, as those who have interacted with a Dream Machine know, the premise is pretty simple.

The Dream Machine vending machine from FOODBEAST and NissanPress the big yellow button on the front of the vending machine, and it will tell you a unique hashtag to use for posting a selfie with the Dream Machine on Instagram. The machine’s internet-enabled Raspberry Pi brain then uses its magic noodle powers (or, more likely, custom software) to detect the hashtag and pop out a tasty treat, video game, or gift card as a reward.

The Dream Machine vending machine from FOODBEAST and Nissan

The Dream Machines appeared at the start of March, and online sources suggest they’ll stay in their current locations throughout the month. I’d like to take this moment to suggest their next locations: Cambridge, UK and Oakland, California. Please and thank you!

Hold your horses…

We know this is a marketing ploy. We know its intention is to get Joe Public to spread the brand across social media. We know it’s all about money. We know. But still, it’s cool, harmless, and delicious. So let’s not have another robocall debate, OK 😂

The post FREE NOODS with FOODBEAST and Nissin appeared first on Raspberry Pi.

Noticia Original

Instaframe: image recognition meets Instagram

Bringing the digital photo frame into an even more modern age than the modern age it already resides in, Sean Tracey uses image recognition and social media to update his mother on the day-to-day happenings of her grandkids.

Sharing social media content

“Like every grandmother, my mum dotes on her grandchildren (the daughter and son of my sister, Grace and Freddie),” Sean explains in his tutorial for the project, “but they don’t live nearby, so she doesn’t get to see them as much as she might like.”

Sean tells of his mother’s lack of interest in social media platforms (they’re too complex), and of the anxiety he feels whenever she picks up his phone to catch up on the latest images of Grace and Freddie.

So I thought: “I know! Why don’t I make my mum a picture frame that filters my Instagram feed to show only pictures of my niece and nephew!”

Genius!

Image recognition and Instagram

Sean’s Instaframe project uses a Watson Visual Recognition model to recognise photos of his niece and nephew posted to his Instagram account, all via a Chrome extension. Then, via a series of smaller functions, these images are saved to a folder and displayed on a screen connected to a Raspberry Pi 3B+.

Sean has written up a full rundown of the build process on his website.

Photos and Pi

Do you like photos and Raspberry Pi? Then check out these other photo-focused Pi projects that we’re sure you’ll love (because they’re awesome) and will want to make yourself (because they’re awesome).

FlipFrame

FlipFrame, the rotating picture frame, rotates according to the orientation of the image on display.

FlipFrame

Upstagram

This tiny homage to the house from Up! takes bird’s-eye view photographs of Paris and uploads them to Instagram as it goes.

Pi-powered DSLR shutter

Adrian Bevan hacked his Raspberry Pi to act as a motion-activated shutter remote for his digital SLR — aka NatureBytes on steroids.

The post Instaframe: image recognition meets Instagram appeared first on Raspberry Pi.

Noticia Original