13 Raspberry Pis slosh-test space shuttle tanks in zero gravity

High-school student Eleanor Sigrest successfully crowdfunded her way onto a zero-G flight to test her latest Raspberry Pi-powered project. NASA Goddard engineers peer reviewed Eleanor’s experimental design, which detects unwanted movement (or ‘slosh’) in spacecraft fluid tanks.

The Raspberry Pi-packed setup

The apparatus features an accelerometer to precisely determine the moment of zero gravity, along with 13 Raspberry Pis and 12 Raspberry Pi cameras to capture the slosh movement.

What’s wrong with slosh?

The Broadcom Foundation shared a pretty interesting minute-by-minute report on Eleanor’s first hyperbolic flight and how she got everything working. But, in a nutshell…

The full apparatus onboard the zero gravity flight

You don’t want the fluid in your space shuttle tanks sloshing around too much. It’s a mission-ending problem. Slosh occurs on take-off and also in microgravity during manoeuvres, so Eleanor devised this novel approach to managing it in place of the costly, heavy subsystems currently used on board space craft.

Eleanor wanted to prove that the fluid inside tanks treated with superhydrophobic and superhydrophilic coatings settled quicker than in uncoated tanks. And she was right: settling times were reduced by 73% in some cases.

Eleanor at work

A continuation of this experiment is due to go up on Blue Origin’s New Shepard rocket – and yes, a patent is already pending.

Curiosity, courage & compromise

At just 13 years old, Eleanor won the Samueli Prize at the 2016 Broadcom MASTERS for her mastery of STEM principles and team leadership during a rigorous week-long competition. High praise came from Paula Golden, President of Broadcom Foundation, who said: “Eleanor is the epitome of a young woman scientist and engineer. She combines insatiable curiosity with courage: two traits that are essential for a leader in these fields.”

Eleanor aged 13 with her award-winning project ‘Rockets & Nozzles & Thrust… Oh My’

That week-long experience also included a Raspberry Pi Challenge, and Eleanor explained: “During the Raspberry Pi Challenge, I learned that sometimes the simplest solutions are the best. I also learned it’s important to try everyone’s ideas because you never know which one might work the best. Sometimes it’s a compromise of different ideas, or a compromise between complicated and simple. The most important thing is to consider them all.”

Get this girl to Mars already.

The post 13 Raspberry Pis slosh-test space shuttle tanks in zero gravity appeared first on Raspberry Pi.

Noticia Original

17000ft| The MagPi 98

How do you get internet over three miles up the Himalayas? That’s what the 17000 ft Foundation and Sujata Sahu had to figure out. Rob Zwetsloot reports in the latest issue of the MagPi magazine, out now.

Living in more urban areas of the UK, it can be easy to take for granted decent internet and mobile phone signal. In more remote areas of the country, internet can be a bit spotty but it’s nothing compared with living up in a mountain.

Tablet computers are provided that connect to a Raspberry Pi-powered network

“17000 ft Foundation is a not-for-profit organisation in India, set up to improve the lives of people settled in very remote mountainous hamlets, in areas that are inaccessible and isolated due to reasons of harsh mountainous terrain,” explains its founder, Sujata Sahu. “17000 ft has its roots in high-altitude Ladakh, a region in the desolate cold desert of the Himalayan mountain region of India. Situated in altitudes upwards of 9300 ft and with temperatures dropping to -50°C in inhabited areas, this area is home to indigenous tribal communities settled across hundreds of tiny, scattered hamlets. These villages are remote, isolated, and suffer from bare minimum infrastructure and a centuries-old civilisation unwilling but driven to migrate to faraway cities in search of a better life. Ladakh has a population of just under 300,000 people living across 60,000 km2 of harsh mountain terrain, whose sustenance and growth depends on the infrastructure, resources, and support provided by the government.”

A huge number of students have already benefited from the program

The local governments have built schools. However, they don’t have enough resources or qualified teachers to be truly effective, resulting in a problem with students dropping out or having to be sent off to cities. 17000 ft’s mission is to transform the education in these communities.

High-altitude Raspberry Pi

“The Foundation today works in over 200 remote government schools to upgrade school infrastructure, build the capacity of teachers, provide better resources for learning, thereby improving the quality of education for its children,” says Sujata. “17000 ft Foundation has designed and implemented a unique solar-powered offline digital learning solution called the DigiLab, using Raspberry Pi, which brings the power of digital learning to areas which are truly off-grid and have neither electricity nor mobile connectivity, helping children to learn better, while also enabling the local administration to monitor performance remotely.”

Each school is provided with solar power, Raspberry Pi computers to act as a local internet for the school, and tablets to connect to it. It serves as a ‘last mile connectivity’ from a remote school in the cloud, with an app on a teacher’s phone that will download data when it can and then update the installed Raspberry Pi in their school.

Remote success

“The solution has now been implemented in 120 remote schools of Ladakh and is being considered to be implemented at scale to cover the entire region,” adds Sujata. “It has now run successfully across three winters of Ladakh, withstanding even the harshest of -50°C temperatures with no failure. In the first year of its implementation alone, 5000 students were enrolled, with over 93% being active. The system has now delivered over 60,000 hours of learning to students in remote villages and improved learning outcomes.”

Not all children stay in the villages year round

It’s already helping to change education in the area during the winter. Many villages (and schools) can shut down for up to six months, and families who can’t move away are usually left without a functioning school. 17000 ft has changed this.

“In the winter of 2018 and 2019, for the first time in a few decades, parents and community members from many of these hamlets decided to take advantage of their DigiLabs and opened them up for their children to learn despite the harsh winters and lack of teachers,” Sujata explains. “Parents pooled in to provide basic heating facilities (a Bukhari – a wood- or dung-based stove with a long pipe chimney) to bring in some warmth and scheduled classes for the senior children, allowing them to learn at their own pace, with student data continuing to be recorded in Raspberry Pi and available for the teachers to assess when they got back. The DigiLab Program, which has been made possible due to the presence of the Raspberry Pi Server, has solved a major problem that the Ladakhis have been facing for years!”

Some of the village schools go unused in the winter

How can people help?

Sujata says, “17000 ft Foundation is a non-profit organisation and is dependent on donations and support from individuals and companies alike. This solution was developed by the organisation in a limited budget and was implemented successfully across over a hundred hamlets. Raspberry Pi has been a boon for this project, with its low cost and its computing capabilities which helped create this solution for such a remote area. However, the potential of Raspberry Pi is as yet untapped and the solution still needs upgrades to be able to scale to cover more schools and deliver enhanced functionality within the school. 17000 ft is very eager to help take this to other similar regions and cover more schools in Ladakh that still remain ignored. What we really need is funds and technical support to be able to reach the good of this solution to more children who are still out of the reach of Ed Tech and learning. We welcome contributions of any size to help us in this project.”

For donations from outside India, write to sujata.sahu@17000ft.org. Indian citizens can donate through 17000ft.org/donate.

The MagPi magazine is out now, available in print from the Raspberry Pi Press onlinestore, your local newsagents, and the Raspberry Pi Store, Cambridge.

You can also download the PDF directly from the MagPi magazine website.

Subscribers to the MagPi for 12 months get a free Adafruit Circuit Playground, or can choose from one of our other subscription offers, including this amazing limited-time offer of three issues and a book for only £10!

The post 17000ft| The MagPi 98 appeared first on Raspberry Pi.

Noticia Original

Embedding computational thinking skills in our learning resources

Learning computing is fun, creative, and exploratory. It also involves understanding some powerful ideas about how computers work and gaining key skills for solving problems using computers. These ideas and skills are collected under the umbrella term ‘computational thinking’.

When we create our online learning projects for young people, we think as much about how to get across these powerful computational thinking concepts as we do about making the projects fun and engaging. To help us do this, we have put together a computational thinking framework, which you can read right now.

What is computational thinking? A brief summary

Computational thinking is a set of ideas and skills that people can use to design systems that can be run on a computer. In our view, computational thinking comprises:

  • Decomposition
  • Algorithms
  • Patterns and generalisations
  • Abstraction
  • Evaluation
  • Data

All of these aspects are underpinned by logical thinking, the foundation of computational thinking.

What does computational thinking look like in practice?

In principle, the processes a computer performs can also be carried out by people. (To demonstrate this, computing educators have created a lot of ‘unplugged’ activities in which learners enact processes like computers do.) However, when we implement processes so that they can be run on a computer, we benefit from the huge processing power that computers can marshall to do certain types of activities.

A group of young people and educators smiling while engaging with a computer

Computers need instructions that are designed in very particular ways. Computational thinking includes the set of skills we use to design instructions computers can carry out. This skill set represents the ways we can logically approach problem solving; as computers can only solve problems using logical processes, to write programs that run on a computer, we need to use logical thinking approaches. For example, writing a computer program often requires the task the program revolves around to be broken down into smaller tasks that a computer can work through sequentially or in parallel. This approach, called decomposition, can also help people to think more clearly about computing problems: breaking down a problem into its constituent parts helps us understand the problem better.

Male teacher and male students at a computer

Understanding computational thinking supports people to take advantage of the way computers work to solve problems. Computers can run processes repeatedly and at amazing speeds. They can perform repetitive tasks that take a long time, or they can monitor states until conditions are met before performing a task. While computers sometimes appear to make decisions, they can only select from a range of pre-defined options. Designing systems that involve repetition and selection is another way of using computational thinking in practice.

Our computational thinking framework

Our team has been thinking about our approach to computational thinking for some time, and we have just published the framework we have developed to help us with this. It sets out the key areas of computational thinking, and then breaks these down into themes and learning objectives, which we build into our online projects and learning resources.

To develop this computational thinking framework, we worked with a group of academics and educators to make sure it is robust and useful for teaching and learning. The framework was also influenced by work from organisations such as Computing At School (CAS) in the UK, and the Computer Science Teachers’ Association (CSTA) in the USA.

We’ve been using the computational thinking framework to help us make sure we are building opportunities to learn about computational thinking into our learning resources. This framework is a first iteration, which we will review and revise based on experience and feedback.

We’re always keen to hear feedback from you in the community about how we shape our learning resources, so do let us know what you think about them and the framework in the comments.

The post Embedding computational thinking skills in our learning resources appeared first on Raspberry Pi.

Noticia Original

TED Talks by Countdown speakers

Christiana Figueres, the former UN climate chief, and head of TED Chris Anderson debut Countdown at the TED World Theater on December 4, 2019. (Photo: Ryan Lash / TED)

The launch of Countdown, a global initiative to champion and accelerate solutions to the climate crisis, is just a few weeks away. Initiated by TED and Future Stewards, Countdown is a global initiative that aims to mobilize millions to halve greenhouse gas emissions by 2030. Speakers will outline what a healthy, abundant, zero-emission future can look like — and how we can build a world that is safer, cleaner and fairer for everyone. Tune in to the free, five-hour virtual event on Saturday, October 10, 2020 from 11am – 5pm ET on TED’s YouTube channel. View the full program and speaker lineup here.

Many Countdown speakers have already shared ideas with TED. Below is a list of their talks to get you thinking in the leadup to the event:

Al Gore, climate advocate

Angel Hsu, climate and data scientist

António Guterres, Secretary-General of the United Nations

Christiana Figueres, stubborn optimist

Elif Shafak, novelist, political scientist

Johan Rockström, climate impact scholar

John Doerr, engineer, investor

Liz Ogbu, designer, urbanist, spatial justice activist

Monica Araya, electrification advocate

Nigel Topping, UK’s High Level Climate Action Champion for COP26

Olafur Eliasson, artist

Rose M. Mutiso, energy researcher

Stephen Wilkes, photographer

Tom Crowther, ecosystem ecology professor

Yvonne Aki-Sawyerr, Mayor of Freetown

Varun Sivaram, clean-energy executive

View the full list of talks in this playlist on YouTube.

from TED Blog https://ift.tt/302nPgt

TED Talks by Countdown speakers

Christiana Figueres, the former UN climate chief, and head of TED Chris Anderson debut Countdown at the TED World Theater on December 4, 2019. (Photo: Ryan Lash / TED)

The launch of Countdown, a global initiative to champion and accelerate solutions to the climate crisis, is just a few weeks away. Initiated by TED and Future Stewards, Countdown is a global initiative that aims to mobilize millions to halve greenhouse gas emissions by 2030. Speakers will outline what a healthy, abundant, zero-emission future can look like — and how we can build a world that is safer, cleaner and fairer for everyone. Tune in to the free, five-hour virtual event on Saturday, October 10, 2020 from 11am – 5pm ET on TED’s YouTube channel. View the full program and speaker lineup here.

Many Countdown speakers have already shared ideas with TED. Below is a list of their talks to get you thinking in the leadup to the event:

Al Gore, climate advocate

Angel Hsu, climate and data scientist

António Guterres, Secretary-General of the United Nations

Christiana Figueres, stubborn optimist

Elif Shafak, novelist, political scientist

Johan Rockström, climate impact scholar

John Doerr, engineer, investor

Liz Ogbu, designer, urbanist, spatial justice activist

Monica Araya, electrification advocate

Nigel Topping, UK’s High Level Climate Action Champion for COP26

Olafur Eliasson, artist

Rose M. Mutiso, energy researcher

Stephen Wilkes, photographer

Tom Crowther, ecosystem ecology professor

Yvonne Aki-Sawyerr, Mayor of Freetown

Varun Sivaram, clean-energy executive

View the full list of talks in this playlist on YouTube.

from TED Blog https://ift.tt/302nPgt

Raspberry Pi powered e-paper display takes months to show a movie

We loved the filmic flair of Tom Whitwell‘s super slow e-paper display, which takes months to play a film in full.

Living art

His creation plays films at about two minutes of screen time per 24 hours, taking a little under three months for a 110-minute film. Psycho played in a corner of his dining room for two months. The infamous shower scene lasted a day and a half.

Tom enjoys the opportunity for close study of iconic filmmaking, but you might like this project for the living artwork angle. How cool would this be playing your favourite film onto a plain wall somewhere you can see it throughout the day?

The Raspberry Pi wearing its e-Paper HAT

Four simple steps

Luckily, this is a relatively simple project – no hardcore coding, no soldering required – with just four steps to follow if you’d like to recreate it:

  1. Get the Raspberry Pi working in headless mode without a monitor, so you can upload files and run code
  2. Connect to an e-paper display via an e-paper HAT (see above image; Tom is using this one) and install the driver code on the Raspberry Pi
  3. Use Tom’s code to extract frames from a movie file, resize and dither those frames, display them on the screen, and keep track of progress through the film
  4. Find some kind of frame to keep it all together (Tom went with a trusty IKEA number)
Living artwork: the Psycho shower scene playing alongside still artwork in Tom’s home

Affordably arty

The entire build cost £120 in total. Tom chose a 2GB Raspberry Pi 4 and a NOOBS 64gb SD Card, which he bought from Pimoroni, one of our approved resellers. NOOBS included almost all the libraries he needed for this project, which made life a lot easier.

His original post is a dream of a comprehensive walkthrough, including all the aforementioned code.

2001: A Space Odyssey would take months to play on Tom’s creation

Head to the comments section with your vote for the creepiest film to watch in ultra slow motion. I came over all peculiar imaging Jaws playing on my living room wall for months. Big bloody mouth opening slooooowly (pales), big bloody teeth clamping down slooooowly (heart palpitations). Yeah, not going to try that. Sorry Tom.

The post Raspberry Pi powered e-paper display takes months to show a movie appeared first on Raspberry Pi.

Noticia Original

Raspberry Pi turns retro radio into interactive storyteller

8 Bits and a Byte created this voice-controllable, interactive, storytelling device, hidden inside a 1960s radio for extra aesthetic wonderfulness.

A Raspberry Pi 3B works with an AIY HAT, a microphone, and the device’s original speaker to run chatbot and speech-to-text artificial intelligence.

This creature is a Bajazzo TS made by Telefunken some time during the 1960s in West Germany, and this detail inspired the espionage-themed story that 8 Bits and a Byte retrofitted it to tell. Users are intelligence agents whose task is to find the evil Dr Donogood.

The device works like one of those ‘choose your own adventure’ books, asking you a series of questions and offering you several options. The story unfolds according to the options you choose, and leads you to a choice of endings.

In with the new (Raspberry Pi tucked in the lower right corner)

What’s the story?

8 Bits and a Byte designed a decision tree to provide a tight story frame, so users can’t go off on question-asking tangents.

When you see the ‘choose your own adventure’ frame set out like this, you can see how easy it is to create something that feels interactive, but really only needs to understand the difference between a few phrases: ‘laser pointer’; ‘lockpick’; ‘drink’; take bribe’, and ‘refuse bribe’.

How does it interact with the user?

Skip to 03mins 30secs to see the storytelling in action

Google Dialogflow is a free natural language understanding platform that makes it easy to design a conversational user interface, which is long-speak for ‘chatbot’.

There are a few steps between the user talking to the radio, and the radio figuring out how to respond. The speech-to-text and chatbot software need to work in tandem. For this project, the data flow runs like so:

1: The microphone detects that someone is speaking and records the audio.

2-3: Google AI (the Speech-To-Text box) processes the audio and extracts the words the user spoke as text.

4-5: The chatbot (Google Dialogflow) receives this text and matches it with the correct response, which is sent back to the Raspberry Pi.

6-7: Some more artificial intelligence uses this text to generate artificial speech.

8: This audio is played to the user via the speaker.

Make sure to check out more of 8 Bits and a Byte’s projects on YouTube. We recommend Mooomba the cow roomba.

The post Raspberry Pi turns retro radio into interactive storyteller appeared first on Raspberry Pi.

Noticia Original

App note: Impedance characteristics of bypass capacitor

App note from ROHM Semiconductors about different type of bypass capacitors impedance and some tip when replacing them. Link here (PDF)

There are various types of capacitors. If you select parts only based on their capacitance values, the requirements for bypass capacitors may not be satisfied, leading to malfunction of devices or nonconformity to standards. This application note focuses on the impedance characteristics of capacitors, and explains cautions for selecting bypass capacitors.

from Dangerous Prototypes https://ift.tt/32Mek6K

App note: BA1117 dropout voltage

App note from ROHM Semiconductors about linear regulator dropout voltage. Link here (PDF)

The dropout voltage is the difference between the input and output voltages that is necessary for the stabilizing operation of a linear regulator. When the input voltage approaches the output voltage, stabilizing operation cannot be maintained and the output starts dropping in proportion to the input. The voltage at which this situation starts, i.e., the difference between the input and output voltages that is necessary for the stabilizing operation, is referred to as the dropout voltage.

from Dangerous Prototypes https://ift.tt/2FCcVqY